Smart IRt/c™

Infrared Temperature Sensor

	0-5V	0-10V	4-20mA	RS232	
Sensing Range		Standard Banges 0,250 °C 0,100 °C			
······································	other Ranges Factory Selectable			0-250 °C	
Ambient Temperature Range		0 °C to 70 °C (internal case temperature)			
Storage Temperature Range			-10 °C to 70 °C	• •	
Field of View of Sensing	2.1 (diat	anaaismat) annra	. 170 5.1 (110) 20	$(1, 2^{\circ})$ and $(0, 1, (1, 5^{\circ}))$	
Element	3:1 (distance:spot) approx. 17°, 5:1 (11°), 20:1 (3°), and 40:1 (1.5°)			(3°) , and $40.1(1.3^{\circ})$	
Minimum Spot size	3 mm (0.12")	on 3:1 and 5:1 m		(0.625") on 20:1 and 40:1's	
Dominant Spectral Response			5 to 14 µ		
Impedance	Less that	n 1 Kohms	50 ohm max	NA	
Emissivity Setting (ε)		0.90 0	can be factory adjus	ted	
Measurement Type			Thermopile		
Resolution		10 bit***		4 Digit w/ floating decimal	
Update Time		Less than	250ms after first rea	ading**	
Response Time (95% of step	Less than 650 ms**				
change)					
Bandwidth	Typically 5Hz				
First Reading in	Less than 2 seconds				
Accuracy (Includes					
Repeatability and		Typically: ±1 °C	(±1.8 °F) or 1% of 1	reading at ε 0.9	
Interchangeability)					
Recommended Power Supply	12 :	$12 \pm 10\%$ V DC or $24 \pm 10\%$ V DC; depending on model			
Power Accepted*	Shuts off when voltage is functionally low*			2	
Power Consumption	12V power less then 400mW 24V Power less than 800 mW				
Dimensions			et Exergen for Draw		
Housing		Zinc-Alumin	um Alloy Z-12 (ISC		
Sensor Connection		3 foot pigtail		DB9 and loose power wires	
Recommended Air Purge	2 Г	SI Contact Erro	raan for Dragares Fl	low Error Cronha	
Pressure	3 PSI - Contact Exergen for Pressure\Flow\Error Graphs			low\Error Graphs	
Maximum Air Pressure	20 PSI - may cause reading errors				
Air Cleanliness			commended, ANSI		
Humidity	Non-Con	densing - ISA-71	.01-1985 Environm	ent Class C Severity X	
Shock			100G		
Weight		Approx	imately 200 grams ((7oz.)	
LED		Constant	ly on for normal ope	eration	
	!	Constantly on for normal operation			

* The unit will not give an error message if the input voltage exceeds recommended high limit, but functionality or accuracy is not guaranteed when exceeding the Recommended Power Supply voltage.

** At room temperature

*** Current Output 10bit 0-20mA

Note: Specifications contained herein are preliminary. For additional or updated specifications please contact Exergen Corporation.

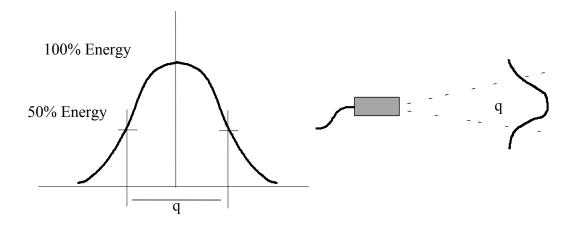
Smart IRt/c™

Infrared Temperature Sensor

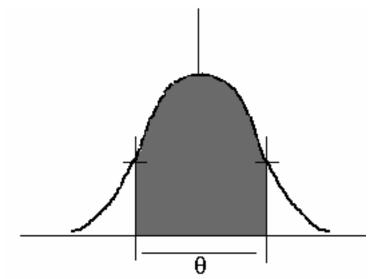
		ERROI	R MESSA	AGES		
Condition	Priority	LED Display	0-5V	0-10V	4-20mA	RS-232
Low Power	1	OFF	Under 0.1V	Under 0.1V	Under 4mA	Not Implemented
Hardware Internal Errors	2, 13	Uniform Flash	Over 4.9V	Over 9.8V	Over 19.7mA	Not Implemented
Vsig-Offset High	3	Uniform Flash	Over 4.9V	Over 9.8V	Over 19.7mA	Not Implemented
Vsig-Offset Low	4	Uniform Flash	Over 4.9V	Over 9.8V	Over 19.7mA	Not Implemented
EMI	5	Uniform Flash	Over 4.9V	Over 9.8V	Over 19.7mA	Not Implemented
Range Error	6	Uniform Flash	Over 4.9V	Over 9.8V	Over 19.7mA	Not Implemented
High Ambient	7	Long Flash**	Over 4.9V	Over 9.8V	Over 19.7mA	Not Implemented
Low Ambient	8	Short Flash*	Over 4.9V	Over 9.8V	Over 19.7mA	Not Implemented
Too Much Heat Flow	9	Long Flash**	Over 4.9V	Over 9.8V	Over 19.7mA	Not Implemented
Too Little Heat Flow	10	Short Flash*	Over 4.9V	Over 9.8V	Over 19.7mA	Not Implemented
High Target	11	Long Flash**	Over 4.9V	Over 9.8V	Over 19.7mA	Not Implemented
Low Target	12	Short Flash*	Over 4.9V	Over 9.8V	Over 19.7mA	Not Implemented

*Six counts off one count on

**Six counts on one count off


	PIN OUT Carol C074 Series/Belden 953 Series/Alpha 630 Series				
Pin	Color	olor Function Pin Color Function			
1	White	Positive Output Signal	6	Brown	TA Pull Down Pin / IO option
2	Green	Reference Output Signal	7	Yellow	RS232_TXD / IO option
3	Red	Positive Power	8	Violet	RS232_RXD / IO option
4	Black	Ground	9	Blue	RS232_RTD (READY_TO_SEND)
5	Bare	Shield	10	Orange	RS232_CTS (CLEAR_TO_SEND)

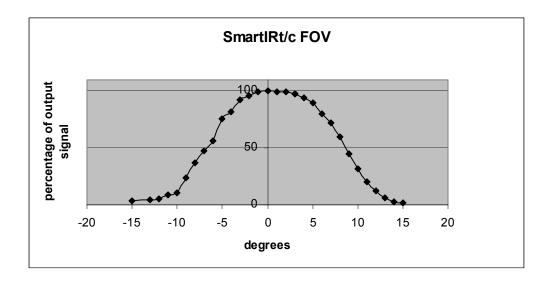
	MODEL KEY	
	SmartIRt/c.F-P-O-T	
CODE	FEATURE	PART #
F-3	3:1 field of view	SmartIRt/c.3-P-O-T
F-5	5:1 field of view	SmartIRt/c.5-P-O-T
F-20	20:1 field of view	SmartIRt/c.20-P-O-T
F-40	40:1 field of view	SmartIRt/c.40-P-O-T
P-12V	12VDC power supplied	SmartIRt/c.F-12V-O-T
P-24V	24VDC power supplied	SmartIRt/c.F-24V-O-T
O-05	0-5V Output	SmartIRt/c.F-P-05-T
O-010	0-10V Output	SmartIRt/c.F-P-010-T
O-420	4-20 mA Output	SmartIRt/c.F-P-420-T
O-232	RS232 Output	SmartIRt/c.F-P-232
Т-70С	Temperature Range -30-70C	SmartIRt/c.F-P-O-70C
T-100C	Temperature Range 0-100C	SmartIRt/c.F-P-O-100C
T-250C	Temperature Range 0-250C	SmartIRt/c.F-P-O-250C
T-500C	Temperature Range 0-500C	SmartIRt/c.F-P-O-500C
T-1000C	Temperature Range 0-1000C	SmartIRt/c.F-P-O-1000C



FIELD OF VIEW

There are two typical methods of defining Field of View for IR devices. A common convention in infrared thermometry, and the one used to verify the optical performance of IRt/c's, is to define the field-of-view by the "1/2 energy points" in an optical rotational experiment. The resultant data looks like a "Bell Curve." The field-of-view is simply the angle between the 50% energy points, also defined as U. See drawing:

The other popular definition of Field of View is the "90% of Energy." This definition is more common in non-IR devices, but has been growing in its acceptance over the past ten years. This method defines the Field of View as the angle where 90% of the integrated energy of the bell curve found from an optical rotation experiment. See drawing:

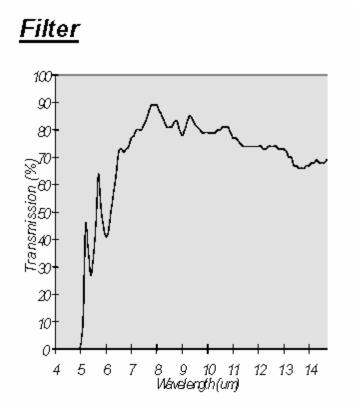


Drawn by:	Date3
BED 2/25/01	11/23/2005

SmartIRt/c.3[™] Field of View

The SmartIRt/c.3TM was designed to have a 3:1 FOV with either definition. Results below are from our FOV test. This is of course a random unit, so results may vary. Additionally this data is just of the IR sensing element, not of the SmartIRt/cTM. Thus, measuring a SmartIRt/c one will get different values, since the output of the SmartIRt/cTM is a combination of the ambient temperature and the IR signal.

From this data we get the following chart:


Unit Type 3:1	FOV Ratio	Approximated Integrated
		Energy
50% Energy Point	3.7:1	85%
90% Integrated Energy	3.3:1	90%

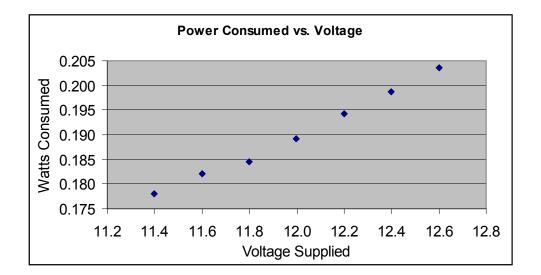
Drawn by:	Date 4
BED 2/25/01	11/23/2005

Filter Properties

This is the manufacturer's specified filter. We have notice that there are slight differences between each units filter. So the graph should be used as a guide only.

Drawn by:	Dates
BED 2/25/01	11/23/2005

Power Consumption


The Power consumption varies from power supplied, output type, and even ambient temperature. Make sure that the information you review is appropriate to your model.

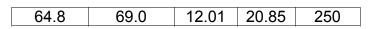
Power Consumption with Supply Voltage Change

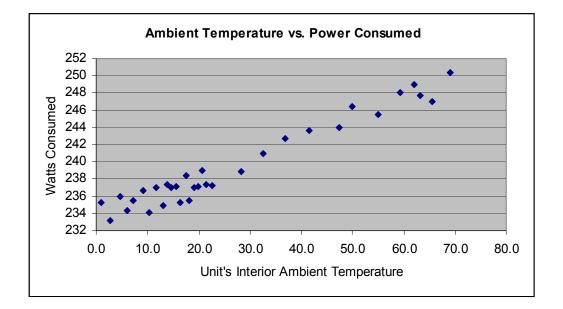
Data was taken for a SmartIRt/c 12V supply, 0-5V output model. The unit was at room temperature looking at a room temperature target. Target temperature should have little or no affect on power consumption. It has also been noticed that other units have high power consumption rates.

The reason for high and low power consumption is that this changes during a period of Autozero

		Current mA		Calculate	d power W
Sample	Voltage V	Low	High	Low	High
Unit A	Supplied				
1	11.4	14.58	15.61	0.166	0.178
2	11.6	14.66	15.69	0.170	0.182
3	11.8	14.76	15.64	0.174	0.185
4	12.0	14.84	15.77	0.178	0.189
5	12.2	14.94	15.92	0.182	0.194
6	12.4	15.01	16.02	0.186	0.199
7	12.6	15.11	16.15	0.190	0.203

Drawn by:	Date
BED 2/25/01	11/23/2005



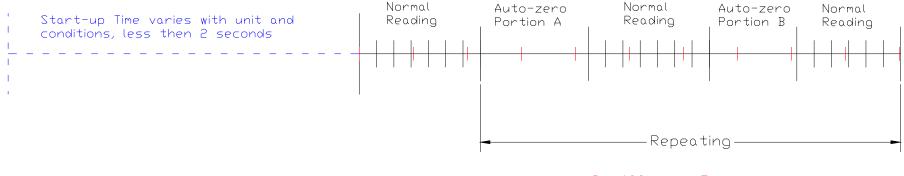

For the same unit type (12V supply, 0-5V output) we also measure the power consumption vs. ambient temperature. Two temperature measurements were taken. One external with an Exergen's D501 and the internal sensor temperature. The unit was taken out of a freezer and powered on for this test. This is clearly shown by the internal temperature starting lower than the external, since the "skin" surface heated up quickly. The internal temperature then becomes greater then the skin temperature. This occurs due to self heating of the unit.

Amb. Temp (C) (D501)Calculated Amb. Temp (C)Power (V)Current (mA)Current (mW)4.71.012.0219.572357.62.612.0219.40233 8.2 4.712.0219.632369.26.112.0219.4923410.17.212.0219.5923511.89.112.0219.6923713.010.412.0219.4823413.811.812.0219.7223715.013.112.0219.7223716.314.612.0219.7223716.615.512.0219.7323716.615.512.0219.7323716.615.512.0219.5923518.317.512.0219.5923519.619.212.0219.7323720.219.912.0219.7323721.020.612.0219.7323722.522.512.0219.7423727.628.212.0119.8923932.132.612.0120.6624135.436.812.0120.2124445.247.312.0120.3124447.349.912.0120.5224652.855.112.0120.6524858.662.112.0120.6224859.	Manager		Currents /	Cummb.	Dever *
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Measured	Unit's	Supply		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
4.7 1.0 12.02 19.57 235 7.6 2.6 12.02 19.40 233 8.2 4.7 12.02 19.63 236 9.2 6.1 12.02 19.49 234 10.1 7.2 12.02 19.59 235 11.8 9.1 12.02 19.69 237 13.0 10.4 12.02 19.48 234 13.8 11.8 12.02 19.72 237 15.0 13.1 12.02 19.72 237 16.3 14.6 12.02 19.75 237 16.3 14.6 12.02 19.72 237 16.6 15.5 12.02 19.72 237 16.6 15.5 12.02 19.73 237 17.7 16.4 12.02 19.57 235 18.3 17.5 12.02 19.59 235 19.6 19.2 12.02 19.72 237 20.2 19.9 12.02 19.73 237 21.0 20.6 12.02 19.73 237 22.5 22.5 12.02 19.74 237 27.6 28.2 12.01 19.89 239 32.1 32.6 12.01 20.66 241 35.4 36.8 12.01 20.29 244 45.2 47.3 12.01 20.31 244 47.3 49.9 12.01 20.52 246 <td< td=""><td></td><td></td><td>(V)</td><td>(mA)</td><td>(mvv)</td></td<>			(V)	(mA)	(mvv)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
11.8 9.1 12.02 19.69 237 13.0 10.4 12.02 19.48 234 13.8 11.8 12.02 19.72 237 15.0 13.1 12.02 19.72 237 15.0 13.1 12.02 19.75 237 16.3 14.6 12.02 19.72 237 16.6 15.5 12.02 19.73 237 17.7 16.4 12.02 19.57 235 18.3 17.5 12.02 19.57 235 18.3 17.5 12.02 19.59 235 19.6 19.2 12.02 19.72 237 20.2 19.9 12.02 19.73 237 21.0 20.6 12.02 19.73 237 21.6 21.4 12.02 19.75 237 22.5 22.5 12.02 19.74 237 27.6 28.2 12.01 19.89 239 32.1 32.6 12.01 20.06 241 35.4 36.8 12.01 20.29 244 45.2 47.3 12.01 20.52 246 52.8 55.1 12.01 20.44 245 56.0 59.2 12.01 20.65 248 58.6 62.1 12.01 20.62 248 59.5 63.2 12.01 20.62 248					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			12.02	19.59	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		9.1	12.02	19.69	237
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13.0	10.4	12.02	19.48	234
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13.8	11.8	12.02	19.72	237
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		13.1	12.02	19.54	235
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15.3	13.9	12.02	19.75	237
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16.3	14.6	12.02	19.72	237
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16.6	15.5	12.02	19.73	237
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.7		12.02	19.57	235
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18.3	17.5	12.02	19.83	238
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18.9	18.2		19.59	235
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19.6	19.2		19.72	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.2		12.02	19.73	237
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		20.6	12.02	19.88	239
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21.6	21.4	12.02	19.75	237
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22.5	22.5		19.74	237
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27.6		12.01		239
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32.1		12.01	20.06	241
45.247.312.0120.3124447.349.912.0120.5224652.855.112.0120.4424556.059.212.0120.6524858.662.112.0120.7324959.563.212.0120.62248	35.4	36.8	12.01		243
45.247.312.0120.3124447.349.912.0120.5224652.855.112.0120.4424556.059.212.0120.6524858.662.112.0120.7324959.563.212.0120.62248					
47.349.912.0120.5224652.855.112.0120.4424556.059.212.0120.6524858.662.112.0120.7324959.563.212.0120.62248					
52.855.112.0120.4424556.059.212.0120.6524858.662.112.0120.7324959.563.212.0120.62248					
56.059.212.0120.6524858.662.112.0120.7324959.563.212.0120.62248					
58.662.112.0120.7324959.563.212.0120.62248					
59.5 63.2 12.01 20.62 248					
	61.6	65.6	12.01	20.57	

Drawn by:	Date?
BED 2/25/01	11/23/2005

We have determined some average power consumption for SmartIRt/c[™] model types. These averages were determined using a very small sample size. Additionally, component batches have a big effect on the power consumed, so many units produced in a year might not have the same average. Always follow the maximum consumed power specification.

Power Consumption for	r Model Type				
Model	Exergen P/N	Average Power Consumed at 25C	Standard Deviation	Sample Size	
12V Supply, 0-5V Output	150014, 150017, 150018, 150019	237	1	6	
24V Supply, 0-10V Output	150001, 150020, 150021, 150021	516	26	10	
12V Supply, 4-20mA Output	150013, 150023, 150024, 150025	316	14	19	
Drawn by:			Date		Date8
BED 2/25/01			11/23/2005		


Timing

The SmartIRt/ c^{TM} is a microprocessor based unit. The processor requires a clock in order to operate. This clock is composed of a resistor and capacitor. Due to the variation in value of capacitors this can have an effect on the clock speed. This will have a direct corrolation to the timing of the SmartIRt/ c^{TM} device. The StartUp, Update, and Response will all be affected.

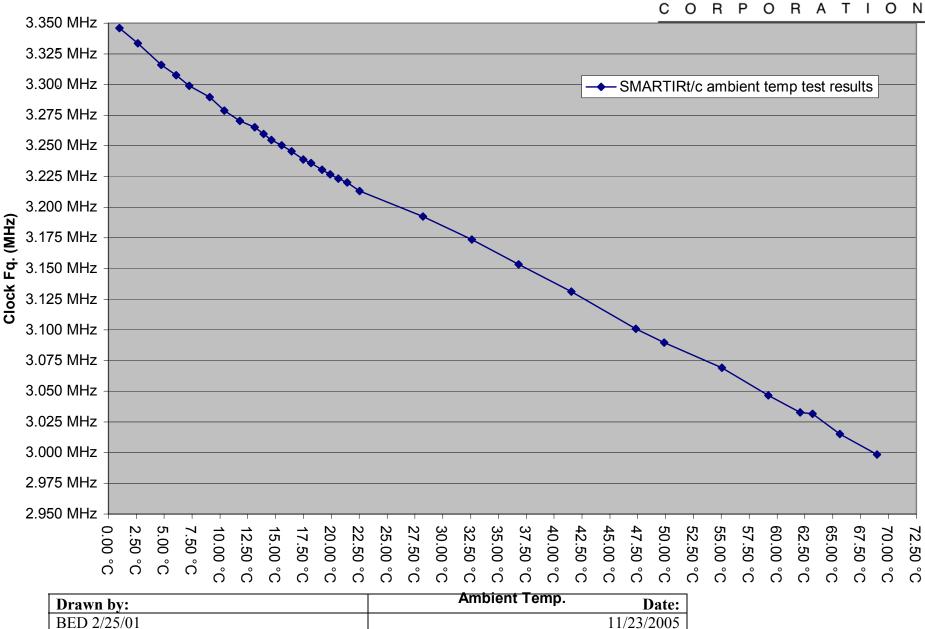
The SmartIRt/ c^{TM} has an Autozero which calibrates for circuit and temperature drift. This process has been divided into two sections, Auto-zero Portion A and Auto-zero Portion B. These periods take considerably longer then a normal reading, which can also affect the response time.

Update Timing Diagram (The below time line assumes a 3.6 MHz operating frequency)

Lines indicate the updating of the output

In 100msec Divisions

Drawn by:	Date:
BED 2/25/01	11/23/2005



Average Frequency

Number	Unit	Frequency		
	Туре	KHz		
88	10V	3159.6		
98	10V	3194.4		
107	10V	3173.2		
111	10V	3157.2		
148	10V	3188		
149	10V	3213.6		
203	10V	3188.8		
207	10V	3282.8		
209	10V	3177.6		
210	10V	3243.2		
58	4-20mA	3180.4		
61	4-20mA	3140.4		
100	4-20mA	3119.2		
120	4-20mA	3132		
121	4-20mA	3177.2		
122	4-20mA	3129.2		
142	4-20mA	3178.8		
144	4-20mA	3180		
157	4-20mA	3125.2		
159	4-20mA	3150.4		
164	4-20mA	3133.6		
165	4-20mA	3182.4		
171	4-20mA	3098.8		
172	4-20mA	3193.6		
175	4-20mA	3116.8		
176	4-20mA	3137.2		
177	4-20mA	3132.8		
182	4-20mA	3122.4		
A	4-20mA	3145.6		
69	5V	3115.2		
192	5V	3159.6		
195	5V	3218.8		
196	5V	3128.4		
198	5V	3243.6		
199	5V	3153.2		
	Average	3164.9		
_	STD 41.4			
Sar	Sample Size 35			

Drawn by:	Date
BED 2/25/01	11/23/2005

SMARTIRt/c ambient temp test results

12

EXERGEN

Output Impedance

This test was performed on a 12V supply and 0-5V output. However, it should also apply to 0-10V output units.

From the circuit below, one can expect that the output impedance would be 750 ohms. This was confirmed experimentally by measuring the output with constant ambient and target, then placing a 750-ohm resistor across the output and the voltage drops approximately in half.

Impact Test

<u>Test #1</u>

The unit was clamped in a vise, a hammer was used to impact one corner closest to the sensor. This impact caused a dent in the corner (marked "one hit"). After the impact the unit was tested and worked. The area of the dent was approximated to be 0.429 square inches.

<u>Test #2</u>

The unit was set on a hard metal surface and a hammer was used to impact the top corner closest to the sensor. The unit was struck several times (marked "multiple hits"). After this test the epoxy around the sensor had cracked and the unit was operational but did not output the correct temperature. The impact caused the two screw heads nearest the sensor to pop off.

Moving surface test

For this test a SMART IRt/c unit was placed with the aperture close to a rotating sanding wheel. A tube of approx. 8' with a .17" dia. was hooked to the purge port. The unit had the plug port sealed off using hot glue. The end of the tubing was lit and allowed to burn to produce smoke. A barely noticeable amount of smoke was sucked into the tube. When the sanding wheel was stopped no smoke was sucked into the tube. By shortening the tube to about 1'6" the flow increased slightly. The ratio of the area of the aperture is 3.66:1

Drawn by:	Date3
BED 2/25/01	11/23/2005

Voltage Variation Test

This test was conducted on a 12V supply, 0-5V output unit. It should not be considered for other model types.

Voltage V	Voltage Variation Test			
Sample	Input	Output	LED state	Notes
	voltage(V)	voltage(V)		
1	0.0	0.000	off	
2	1.0	0.000	off	
3	2.0	0.000	off	
4	3.0	0.000	off	
5	4.0	0.000	dim lit	
6	4.5	0.000	dim lit	
7	5.0	0.364	dim lit	Output value is very unstable, and with small changes in input voltage varies a lot
8	5.3	0.412	dim lit	
9	5.5	0.305	dim lit	Unit acting very erratic
10	6.0	0.375	dim lit	It takes a moment for the output power to come up.
11	6.5	0.220	dim lit	
12	7.0	0.322	dim lit	
13	7.5	0.327	dim lit	Flick at 1.4 V first an then went down
14	8.0	0.331	medium lit	
15	8.5	0.385	medium lit	
16	9.0	0.385	lit	
17	9.5	0.380	lit	
18	10.0	0.380	lit	
19	10.5	0.380	lit	
20	11.0	0.380	lit	
21	11.5	0.380	lit	
22	12.0	0.380	lit	
23	12.5	0.375	lit	
24	13.0	0.375	lit	
25	13.5	0.370	lit	
26	14.0	0.375	lit	
27	14.5	0.375	lit	
28	15.0	0.370	lit	
29	15.5	0.370	lit	
30	16.0	0.370	lit	
	Drawn by:			Date4
BED 2/	BED 2/25/01			11/23/2005

31	16.5	0.370	lit	
32	17.0	0.370	lit	
33	17.5	0.370	lit	
34	18.0	0.370	lit	
35	18.5	0.375	lit	
36	19.0	0.370	lit	
37	19.5	0.370	lit	
38	20.0	0.370	lit	
39	20.5	0.370	lit	
40	21.0	0.370	lit	
41	21.5	0.370	lit	
42	22.0	0.365	lit	
43	22.5	0.365	lit	
44	23.0	0.370	lit	
45	23.5	0.370	lit	
46	24.0	0.365	lit	
47	24.5	0.370	lit	
48	25.0	0.365	lit	
49	25.5	0.365	lit	
50	26.0	0.365	lit	
51	26.5	0.365	lit	
52	27.0	0.365	lit	
53	27.5	0.365	lit	
54	28.0	0.365	lit	
55	28.5	0.365	lit	
56	29.0	0.365	lit	
57	29.5	0.360	lit	
58	30.0	0.360	lit	
59	30.5	0.365	lit	
60	31.0	0.360	lit	

As you can see the unit can actually take a much higher voltage than we recommend. This is useful for applications where 16 or 18 volts might be easily available. However, we do not guarantee the accuracy of the unit under these conditions. It is possible that the self heating effects of the extra energy dissipated within the unit will cause the unit be inaccurate. We recommend extensive testing for customers who operate with supply powers greater than the specification.

Drawn by:	Dates
BED 2/25/01	11/23/2005